熱線電話:0755-23712116
郵箱:contact@shuangyi-tech.com
地址:深圳市寶安區沙井街道后亭茅洲山工業園工業大廈全至科技創新園科創大廈2層2A
狀態機是有限狀態自動機的簡稱,是現實事物運行規則抽象而成的一個數學模型。
先來解釋什么是“狀態”( State )。現實事物是有不同狀態的,例如一個LED等,就有 亮 和 滅兩種狀態。我們通常所說的狀態機是有限狀態機,也就是被描述的事物的狀態的數量是有限個,例如LED燈的狀態就是兩個 亮和 滅。
狀態機,也就是 State Machine ,不是指一臺實際機器,而是指一個數學模型。說白了,一般就是指一張狀態轉換圖。
以物理課學的燈泡圖為例,就是一個最基本的小型狀態機
可以畫出以下的狀態機圖
這里就是兩個狀態:①燈泡亮,②燈泡滅 如果打開開關,那么狀態就會切換為 燈泡亮 。燈泡亮 狀態下如果關閉開關,狀態就會切換為 燈泡滅。
狀態機的全稱是有限狀態自動機,自動兩個字也是包含重要含義的。給定一個狀態機,同時給定它的當前狀態以及輸入,那么輸出狀態時可以明確的運算出來的。例如對于燈泡,給定初始狀態燈泡滅 ,給定輸入“打開開關”,那么下一個狀態時可以運算出來的。
下面來給出狀態機的四大概念。
State ,狀態。一個狀態機至少要包含兩個狀態。例如上面燈泡的例子,有 燈泡亮和 燈泡滅兩個狀態。
Event ,事件。事件就是執行某個操作的觸發條件或者口令。對于燈泡,“打開開關”就是一個事件。
Action ,動作。事件發生以后要執行動作。例如事件是“打開開關”,動作是“開燈”。編程的時候,一個 Action 一般就對應一個函數。
Transition ,變換。也就是從一個狀態變化為另一個狀態。例如“開燈過程”就是一個變換。
狀態機是一個對真實世界的抽象,而且是邏輯嚴謹的數學抽象,所以明顯非常適合用在數字領域。可以應用到各個層面上,例如硬件設計,編譯器設計,以及編程實現各種具體業務邏輯的時候。
進程管理是Linux五大子系統之一,非常重要,實際實現起來非常復雜,我們來看下進程是如何切換狀態的。
下圖是進程的5狀態模型:
關于該圖簡單介紹如下:
可運行態:當進程正在被CPU執行,或已經準備就緒隨時可由調度程序執行,則稱該進程為處于運行狀態(running)。進程可以在內核態運行,也可以在用戶態運行。當系統資源已經可用時,進程就被喚醒而進入準備運行狀態,該狀態稱為就緒態。
淺度睡眠態(可中斷):進程正在睡眠(被阻塞),等待資源到來是喚醒,也可以通過其他進程信號或時鐘中斷喚醒,進入運行隊列。
深度睡眠態(不可中斷):其和淺度睡眠基本類似,但有一點就是不可由其他進程信號或時鐘中斷喚醒。只有被使用wake_up函數明確喚醒時才能轉換到可運行的就緒狀態。
暫停狀態:當進程收到信號SIGSTOP、SIGTSTP、SIGTTIN或SIGTTOU時就會進入暫停狀態。可向其發送SIGCONT信號讓進程轉換到可運行狀態。
僵死狀態:當進程已停止運行,但其父進程還沒有詢問其狀態時,未釋放PCB,則稱該進程處于僵死狀態。
進程的狀態就是按照這個狀態圖進行切換的。
該狀態流程有點復雜,因為我們目標只是實現一個簡單的狀態機,所以我們簡化一下該狀態機如下:
要想實現狀態機,首先將該狀態機轉換成下面的狀態遷移表。
簡要說明如下:假設當前進程處于running狀態下,那么只有schedule事件發生之后,該進程才會產生狀態的遷移,遷移到owencpu狀態下,如果在此狀態下發生了其他的事件,比如wake、wait_event都不會導致狀態的遷移。
如上圖所示:
每一列表示一個狀態,每一行對應一個事件。
該表是實現狀態機的最核心的一個圖,請讀者詳細對比該表和狀態遷移圖的的關系。
實際場景中,進程的切換會遠比這個圖復雜,好在眾多大神都幫我們解決了這些復雜的問題,我們只需要站在巨人的肩膀上就可以了。
根據狀態遷移表,定義該狀態機的狀態如下:
typedef enum {
sta_origin=0,
sta_running,sta_owencpu,sta_sleep_int,sta_sleep_unint}State;
發生的事件如下:
typedef enum{
evt_fork=0,
evt_sched,evt_wait,evt_wait_unint,evt_wake_up,evt_wake,}EventID;
不論是狀態還是事件都可以根據實際情況增加調整。
定義一個結構體用來表示當前狀態轉換信息:
typedef struct {
State curState;//當前狀態
EventID eventId;//事件ID
State nextState;//下個狀態
CallBack action;//回調函數,事件發生后,調用對應的回調函數
}StateTransform ;
事件回調函數:實際應用中不同的事件發生需要執行不同的action,就需要定義不同的函數, 為方便起見,本例所有的事件都統一使用同一個回調函數。功能:打印事件發生后進程的前后狀態,如果狀態發生了變化,就調用對應的回調函數。
void action_callback(void *arg)
{StateTransform *statTran = (StateTransform *)arg;if(statename[statTran->curState] == statename[statTran->nextState])
{printf("invalid event,state not change\n");
}else{
printf("call back state from %s --> %s\n",
statename[statTran->curState],statename[statTran->nextState]);}}
為各個狀態定義遷移表數組:
/*origin*/
StateTransform stateTran_0={{sta_origin,evt_fork, sta_running,action_callback},{sta_origin,evt_sched, sta_origin,},{sta_origin,evt_wait, sta_origin,},{sta_origin,evt_wait_unint, sta_origin,},{sta_origin,evt_wake_up, sta_origin,},{sta_origin,evt_wake, sta_origin,},};/*running*/
StateTransform stateTran_1={{sta_running,evt_fork, sta_running,},{sta_running,evt_sched, sta_owencpu,action_callback},{sta_running,evt_wait, sta_running,},{sta_running,evt_wait_unint, sta_running,},{sta_running,evt_wake_up, sta_running,},{sta_running,evt_wake, sta_running,},};/*owencpu*/
StateTransform stateTran_2={{sta_owencpu,evt_fork, sta_owencpu,},{sta_owencpu,evt_sched, sta_owencpu,},{sta_owencpu,evt_wait, sta_sleep_int,action_callback},{sta_owencpu,evt_wait_unint, sta_sleep_unint,action_callback},{sta_owencpu,evt_wake_up, sta_owencpu,},{sta_owencpu,evt_wake, sta_owencpu,},};/*sleep_int*/
StateTransform stateTran_3={{sta_sleep_int,evt_fork, sta_sleep_int,},{sta_sleep_int,evt_sched, sta_sleep_int,},{sta_sleep_int,evt_wait, sta_sleep_int,},{sta_sleep_int,evt_wait_unint, sta_sleep_int,},{sta_sleep_int,evt_wake_up, sta_sleep_int,},{sta_sleep_int,evt_wake, sta_running,action_callback},};/*sleep_unint*/
StateTransform stateTran_4={{sta_sleep_unint,evt_fork, sta_sleep_unint,},{sta_sleep_unint,evt_sched, sta_sleep_unint,},{sta_sleep_unint,evt_wait, sta_sleep_unint,},{sta_sleep_unint,evt_wait_unint, sta_sleep_unint,},{sta_sleep_unint,evt_wake_up, sta_running,action_callback},{sta_sleep_unint,evt_wake, sta_sleep_unint,},};
實現event發生函數:
void event_happen(unsigned int event)
功能:
根據發生的event以及當前的進程state,找到對應的StateTransform 結構體,并調用do_action
void do_action(StateTransform *statTran)
功能:
根據結構體變量StateTransform,實現狀態遷移,并調用對應的回調函數。
#define STATETRANS(n) (stateTran_##n)
/*change state & call callback*/voiddo_action(StateTransform *statTran)
{if( == statTran)
{perror("statTran is \n");
return;
}//狀態遷移globalState = statTran->nextState;if(statTran->action != )
{//調用回調函數statTran->action((void*)statTran);}else{
printf("invalid event,state not change\n");
}}voidevent_happen(unsigned int event)
{switch(globalState){case sta_origin:do_action(&STATETRANS(0)[event]);
break;
case sta_running:do_action(&STATETRANS(1)[event]);
break;
case sta_owencpu:do_action(&STATETRANS(2)[event]);
break;
case sta_sleep_int:do_action(&STATETRANS(3)[event]);
break;
case sta_sleep_unint:do_action(&STATETRANS(4)[event]);
break;
default:printf("state is invalid\n");
break;
}}
測試程序:功能:
初始化狀態機的初始狀態為sta_origin;
創建子線程,每隔一秒鐘顯示當前進程狀態;
事件發生順序為:evt_fork-->evt_sched-->evt_sched-->evt_wait-->evt_wake。
讀者可以跟自己的需要,修改事件發生順序,觀察狀態的變化。
main.c
/*顯示當前狀態*/
void *show_stat(void *arg)
{int len;
char buf[64]={0};
while(1)
{sleep(1);
printf("cur stat:%s\n",statename[globalState]);
}}voidmain(void)
{init_machine;//創建子線程,子線程主要用于顯示當前狀態
pthread_create(&pid, ,show_stat, );
sleep(5);
event_happen(evt_fork);
sleep(5);
event_happen(evt_sched);
sleep(5);
event_happen(evt_sched);
sleep(5);
event_happen(evt_wait);
sleep(5);
event_happen(evt_wake);
}
運行結果:
由結果可知:
evt_fork-->evt_sched-->evt_sched-->evt_wait-->evt_wake
該事件發生序列對應的狀態遷移順序為:
origen-->running-->owencpu-->owencpu-->sleep_int-->running